Stereochemistry in the disorder-order continuum of protein interactions

Nature. 2024 Dec;636(8043):762-768. doi: 10.1038/s41586-024-08271-6. Epub 2024 Nov 27.

Abstract

Intrinsically disordered proteins can bind via the formation of highly disordered protein complexes without the formation of three-dimensional structure1. Most naturally occurring proteins are levorotatory (L)-that is, made up only of L-amino acids-imprinting molecular structure and communication with stereochemistry2. By contrast, their mirror-image dextrorotatory (D)-amino acids are rare in nature. Whether disordered protein complexes are truly independent of chiral constraints is not clear. Here, to investigate the chiral constraints of disordered protein-protein interactions, we chose as representative examples a set of five interacting protein pairs covering the disorder-order continuum. By observing the natural ligands and their stereochemical mirror images in free and bound states, we found that chirality was inconsequential in a fully disordered complex. However, if the interaction relied on the ligand undergoing extensive coupled folding and binding, correct stereochemistry was essential. Between these extremes, binding could be observed for the D-ligand with a strength that correlated with disorder in the final complex. These findings have important implications for our understanding of the molecular processes that lead to complex formation, the use of D-peptides in drug discovery and the chemistry of protein evolution of the first living entities on Earth.

MeSH terms

  • Amino Acids / chemistry
  • Amino Acids / metabolism
  • Intrinsically Disordered Proteins* / chemistry
  • Intrinsically Disordered Proteins* / metabolism
  • Ligands
  • Models, Molecular*
  • Protein Binding*
  • Protein Folding
  • Proteins / chemistry
  • Proteins / metabolism
  • Stereoisomerism

Substances

  • Ligands
  • Intrinsically Disordered Proteins
  • Amino Acids
  • Proteins