Chemoresistance is a major driver of cancer deaths. One understudied mechanism of chemoresistance is quiescence. We used single cell culture to identify, retrieve, and RNA-Seq profile primary quiescent ovarian cancer cells (qOvCa). We found that many qOvCa differentially expressed genes are transcriptional targets of the Myocardin Related Transcription Factor/Serum Response Factor (MRTF/SRF) pathway. We also found that genetic disruption of MRTF-SRF interaction, or an MRTF/SRF inhibitor (CCG257081) impact qOvCa gene expression and induce a quiescent state in cancer cells. Suggesting a broad role for this pathway in quiescence, CCG257081 treatment induced quiescence in breast, lung, colon, pancreatic and ovarian cancer cells. Furthermore, CCG081 (i) maintained a quiescent state in patient derived breast cancer organoids and, (ii) induced tumor growth arrest in ovarian cancer xenografts. Together, these data suggest that MRTF/SRF pathway is a critical regulator of quiescence in cancer and a possible therapeutic target.