How seizures begin at the level of microscopic neural circuits remains unknown. High-density CMOS microelectrode arrays provide a new avenue for investigating neuronal network activity, with unprecedented spatial and temporal resolution. We use high-density CMOS-based microelectrode arrays to probe the network activity of human hippocampal brain slices from six patients with mesial temporal lobe epilepsy in the presence of hyperactivity promoting media. Two slices from the dentate gyrus exhibited epileptiform activity in the presence of low magnesium media with kainic acid. Both slices displayed an electrophysiological phenotype consistent with a reciprocally connected circuit, suggesting a recurrent feedback loop is a key driver of epileptiform onset. Larger prospective studies are needed, but these findings have the potential to elucidate the network signals underlying the initiation of seizure behavior.