Metal-nitrenes are valuable reactive intermediates for synthesis and are widely used to construct biologically relevant scaffolds, complexes and functionalized molecules. The ring expansion of cyclic molecules via single-nitrogen-atom insertion via nitrene or metal-nitrenoid intermediates has emerged as a promising modern strategy for driving advantageous nitrogen-rich compound synthesis. In recent years, the catalytic insertion of a single nitrogen atom into carbocycles, leading to N-heterocycles, has become an important focus of modern synthetic approaches with applications in medicinal chemistry, materials science, and industry. Catalytic single-nitrogen-atom insertions have been increasing in prominence in modern organic synthesis due to their capability to construct high-value added nitrogen-containing heterocycles from simple feedstocks. In this review, we will discuss the rapidly growing field of skeletal editing via single-nitrogen-atom insertion using transition metal catalysis to access nitrogen-containing heterocycles, with a focus on nitrogen insertion across a wide spectrum of carbocycles.
Keywords: Molecular editing; Nitrene; Nitrogen heterocycles; Nitrogen-atom-insertion; Transition metal catalysis.
© 2024 The Chemical Society of Japan and Wiley-VCH GmbH.