Theaflavins Applications to Ameliorate Implant Failure and Eradicate Microbial Infections and Foodborne Pathogens: A Comprehensive Review

Phytother Res. 2024 Nov 28. doi: 10.1002/ptr.8383. Online ahead of print.

Abstract

Theaflavins, powerful antioxidants found in black tea (Camellia sinensis), have garnered increasing interest for their promising therapeutic potential. Experimental studies have contributed to enlightening about the advantages of theaflavins, including their antioxidant, anti-inflammatory, anticancer, antiosteoporosis, and antimicrobial properties. Theaflavin and its derivatives, particularly theaflavin-3,3'-digallate, have been particularly noted for their enhanced action in different areas. These compounds have found an important role as alternatives or adjuvants in the pharmaceutical sector, food industry, and in the improvement of health conditions. This review focuses on the antioxidant and anti-inflammatory aspects of theaflavins, particularly their potential in addressing peri-implant osteolysis. We explore mechanisms and pathways involved in this therapeutic action. Furthermore, we cover some of the relevant studies on the antimicrobial action of theaflavins in both the health and food sectors. Specifically, we explore the use of theaflavins for the treatment of dental infections, where these compounds have shown particular efficacy against several bacterial strains and their antimicrobial application in food matrices. Given the low solubility and stability of theaflavins in physiological conditions, we emphasize the benefits of the development of biocompatible and biodegradable nanoformulations to enhance the stability, bioavailability, and efficacy of these polyphenols, to promote their broader research and application. Given the potential demonstrated so far by in vitro and in vivo studies, the application of theaflavins stands as a promising alternative to enhance the existing strategies and fight prosthetic failure and antimicrobial resistance in the health and food sectors.

Keywords: dental infections; nanoformulations; peri‐implant osteolysis; prosthetic failure; theaflavins.

Publication types

  • Review