Astrocytes are the most numerous type of glial cells found in the nervous system. They regulate energy homeostasis in collaboration with the neuronal circuits involved in energy balance. These glial cells are equipped with sensors and receptors for nutrients and metabolic hormones in order to control energy homeostasis. Astrocytes, like hypothalamic appetite-regulating neurons, are vulnerable to the negative consequences of a high-fat diet (HFD) feeding, which is associated with an inflammatory response and transforms them into a reactive astrocyte state, consequently leading to the disruption of energy balance. Additionally, these cells have sexually dimorphic characteristics, which will lead to different metabolic outcomes in males and females. In this review, we will discuss the various physiological and pathophysiological roles of astrocytes in regulating energy balance. Finally, we will discuss the sexual dimorphism in astrocytes and the impact of estrogen on eliciting distinct responses.
Keywords: Astrocyte; Estrogen; High-fat diet; Hypothalamus; Inflammation.
© The Author(s), under exclusive licence to Tehran University of Medical Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.