As cardiomyocyte loss causes heart failure, inhibition of cardiomyocyte death may be a therapeutic strategy against heart failure. In this study, we have identified defender against cell death 1 (Dad1) as a candidate regulator of cardiomyocyte death, using complementary DNA microarray and siRNA knockdown screening. Dad1 is a subunit of oligosaccharyltransferase (OST) complex that is responsible for protein N-glycosylation; however, its function in cardiomyocytes remains unknown. Importantly, the knockdown of Dad1 using siRNA reduced the viability of neonatal rat cardiomyocytes (NRCMs), accompanied by cleaved caspase3 expression, independent of endoplasmic reticulum stress. Dad1 knockdown impaired cell spreading and reduced myofibrillogenesis in NRCMs, suggesting that Dad1 knockdown induced anoikis, apoptosis by disrupting cell-matrix interactions. Consistently, knockdown of Dad1 impaired N-glycosylation of integrins α5 and β1, accompanied by inactivation of focal adhesion kinase. When cell adhesion was enhanced using adhesamine, fibronectin, or collagen type IV, cardiomyocyte death induced by Dad1 knockdown was reduced. Dad1 knockdown decreased the expression of staurosporine and temperature-sensitive 3 A (Stt3A), a catalytic subunit of OST complex. Interestingly, Stt3A knockdown using Stt3A siRNA reduced the expression of Dad1, indicating that both Dad1 and Stt3A were required for OST stabilization. In conclusion, Dad1 plays an important role in maintaining the expression of mature N-glycosylated integrins and their downstream signaling molecules to suppress cardiomyocyte anoikis.NEW & NOTEWORTHY This study found for the first time that the knockdown of Dad1 induced cardiomyocyte death, accompanied by impairment of myofibrillogenesis and cell spreading. Dad1 regulates the N-glycosylation of integrins in cooperation with Stt3A and preserves cell adhesion activity, promoting cardiomyocyte survival. This is the first demonstration that Dad1 contributes to the maintenance of cardiac homeostasis through the posttranslational modification of integrins, providing a novel insight into the biological significance of OST complex in cardiomyocytes.
Keywords: N-glycosylation; cardiomyocyte death; cell adhesion; defender against cell death 1; integrin.