A Facile and Efficient Synthesis of BODIPY-Based Fluorescent Probes for Selective Detection of Hydrazine

Chem Asian J. 2024 Nov 29:e202401197. doi: 10.1002/asia.202401197. Online ahead of print.

Abstract

A facile and ratiometric BODIPY-based fluorescent probe 4 was developed for the selective detection of hydrazine in solution phase. The BODIPY-based fluorophores 3 and 4 were easily prepared in high yields from the L-proline catalyzed reaction between α/β-formyl BODIPY 1 a/1 b and 3-cyanoacetylindole 2. Use of easily accessible substrates, benign solvent, catalytic amount of L-proline and high product yields are the advantageous features of the developed protocol. Prepared BODIPYs 3 (536 nm) and 4 (567 nm) showed bathochromic shifts (36-67 nm) in UV-Visible absorption maxima when compared to parent BODIPY (500 nm) in dichloromethane (DCM). The stable and economical BODIPY-based probe 4 exhibited rapid response and remarkable selectivity towards hydrazine when compared to other commonly occurring analytes. At low concentration, the BODIPY probe 4 (10 μΜ) is non-fluorescent, however, a significant enhancement in fluorescent (turn-on) was observed with the increasing concentration of hydrazine (0-100 μΜ). This change in fluorescent behaviour may be ascribed to intramolecular charge transfer (ICT) effect as supported by density functional theory (DFT) calculations. With a 4.3 μM detection limit, the BODIPY probe 4 was also found to be useful in detecting hydrazine in real environmental samples.

Keywords: BODIPY; Hydrazine; Intramolecular charge transfer; L-proline; Turn-on fluorescent probe; α-cyanoenone.

Grants and funding