Background: Next-Generation Sequencing (NGS) catalyzed breakthroughs across various scientific domains. Illumina's sequencing by synthesis method has long been central to NGS, but new sequencing methods like Element Biosciences' AVITI technology are emerging. AVITI is reported to offer improved signal-to-noise ratios and cost reductions. However, its reliance on rolling circle amplification, which can be affected by polymer size, raises questions about its effectiveness in sequencing small RNAs (sRNAs) such as microRNAs (miRNAs), small nucleolar RNAs (snoRNAs), and many others. These sRNAs are crucial regulators of gene expression and involved in various biological processes. Additionally, capturing capped small RNAs (csRNA-seq) is a powerful method for mapping active or "nascent" RNA polymerase II transcription initiation in tissues and clinical samples.
Results: Here, we report a new protocol for seamlessly sequencing short fragments on the AVITI and demonstrate that AVITI and Illumina sequencing technologies equivalently capture human, cattle (Bos taurus), and bison (Bison bison) sRNA or csRNA sequencing libraries, increasing confidence in both sequencing approaches. Additionally, analysis of generated nascent transcription start site (TSS) data for cattle and bison revealed inaccuracies in their current genome annotations, underscoring the potential and necessity to translate small and nascent RNA sequencing methodologies to livestock.
Conclusions: Our accelerated and optimized protocol bridges the advantages of AVITI sequencing with critical methods that rely on sequencing short fragments. This advance bolsters the utility of AVITI technology alongside traditional Illumina platforms, offering new opportunities for NGS applications.
Keywords: AVITI; Capped small RNA sequencing (csRNA-seq); Illumina; Livestock; Small RNA sequencing (sRNA-seq).
© 2024. The Author(s).