Here, we constructed a novel bacterial deodorant (BD) composed of Delftia tsuruhatensis, Paracoccus denitrificans, Pediococcus acidilactici, and Bacillus velezensis. The BD alone removed 64.84 % of NH3, 100 % of H2S, and 63.68 % of comprehensive odor (OU) during a five-day fermentation of pig manure. The effect was enhanced by introducing Camellia sinensis in the composite bacterial deodorant (CBD) treatment, with the removal efficiency (RE) of NH3 and OU being 88.68 % and 88.14 %, respectively. In prolonged trials, maximum RE of NH3, H2S and OU RE reached 90.16 %, 92.32 % and 100 % in CBD group. Bacterial composition of manure revealed that the abundance of odor-producing microbes (Kurthia, Solibacillus, Proteiniphilum and Acholeplasma) and potential pathogens decreased after CBD application. Functional prediction and correlation analyses indicated that the process of nitrification, denitrification and S/N assimilation were facilitated, while S/N mineralization and methanogenesis processes might be inhibited. This deodorant promoted the conversion of malodorous substances into non-odorous forms, establishing an efficient odor removal system in hoggery. Therefore, the bacterial deodorant compounded with C. sinensis has been shown to be an effective method for deodorizing pig farms. This approach will advance the livestock industry toward greener practices and environmental protection, contributing positively to the development of a sustainable agro-ecosystem.
Keywords: Camellia sinensis; Composite bacterial deodorant; In-situ deodorization; Odor; Pig manure.
Copyright © 2024 Elsevier Ltd. All rights reserved.