Combined sorption-biodegradation for removal of energetic compounds from stormwater runoff

J Hazard Mater. 2024 Nov 23:483:136595. doi: 10.1016/j.jhazmat.2024.136595. Online ahead of print.

Abstract

Munition constituents (MC) in stormwater runoff have the potential to move these pollutants into receiving bodies at military installations. Here we present further evaluation of a passive and sustainable biofilter technology for removal of dissolved MC from simulated surface runoff by combined sorption-biodegradation processes under dynamic flow conditions. Columns were packed with MC sorbents Sphagnum peat moss and cationized (CAT) pine shavings with and without wood-based biochar. Some columns also received biodegradable polymers as a slow-release carbon source and MC degrading bacterial cultures. MC removal was greater under combined sorption-biodegradation conditions than under sorption only conditions, ranging from 2.5-fold for 2,4,6-trinitrotoluene (TNT) to > 25-fold for hexahydro-1,3,5-trinitro-s-triazine (RDX). Biochar improved removal for some MC, which was attributed to it acting as a buffer by its ability to sorb/degrade these compounds, thus delaying their elution from the columns until the biodegradation activity increased. It was also found that labile carbon source availability, rather than microbial culture viability, was responsible for the apparent reduction in energetic removal over time. These results provide a foundation for further development of technologies for remediation of energetic compounds in military range stormwater runoff.

Keywords: 2,4-dinitroanisole (DNAN); 3-nitro-1,2,4-triazol-5-one (NTO); Explosives; NQ; Perchlorate; RDX; Surface runoff.