Most of the peptide drugs are often delivered subcutaneously. The significant barrier in this type of peptide administration is the high concentration of formulation, which can lead to self-assembly and aggregation. These phenomena can negatively impact the peptide drug's bioavailability, manufacturing, and injectability. This study investigated the self-assembly behavior of Lanreotide acetate at high concentrations in water using Hydroxypropyl β- Cyclodextrins (HPβCyD) to mitigate the self-assembly and enhance release rate during subcutaneous administration. Our finding demonstrated that the lanreotide/ HPβCyD inclusion complex effectively prevents aromatic-aromatic interactions of lanreotide, thereby controlling self-assembly. This complexation also alters the viscosity behavior of lanreotide from non-Newtonian under low shear rates to Newtonian solution. Furthermore, the lanreotide/ HPβCyD inclusion complex reduces interactions with hyaluronic acid in the subcutaneous environment, leading to significant improvement in the release rate of lanreotide acetate at high concentrations (above 3 % w/w in water).
Keywords: Biopharmaceutical characterization; Complexation; Controlled release; Cyclodextrin(s); Diffusion; Drug excipient interactions; Peptide delivery; Peptide(s); Subcutaneous drug delivery; Viscosity.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.