Our previous study found that exposure to higher organophosphate flame retardants (PFRs) was associated with increased prevalence of wheeze and type 2 inflammation among school-aged children. It remains unclear whether PFR exposure elevates oxidative stress in these general pediatric population, thereby potentially contributing to the development of allergic diseases. This study examined the associations between individual and mixture exposure to PFRs and oxidative stress in children aged 9-12 years (n = 423). The oxidative stress biomarkers included 4-hydroxynonenal (4-HNE) and hexanoyl-lysine (HEL) for lipid peroxidation, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) for DNA damage. We also examined the mediation effects of oxidative stress on the relationships between PFR exposure and health outcomes: wheeze and type 2 inflammation biomarkers, including fraction of exhaled nitric oxide (FeNO) and blood eosinophils. Higher concentrations of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), Σ triphenyl phosphate (ΣTPHP), Σ tris(2-butoxyethyl) phosphate (ΣTBOEP), and Σ 2-Ethylhexyldiphenyl phosphate (ΣEHDPHP) metabolites were significantly associated with higher levels of 4-HNE. Elevated concentrations of TDCIPP, ΣTPHP, and ΣTBOEP were positively associated with HEL. Higher ΣTPHP and ΣTBOEP were positively associated with 8-OHdG. The PFR mixture was positively associated with all three oxidative stress biomarkers according to the Quantile g-computation and Bayesian kernel machine regression models. Oxidative stress biomarkers mediated 11.4 % to 15.3 % of the association between PFRs and FeNO ≥35 ppb. PFR exposure was positively associated with oxidative stress markers of DNA damage and lipid peroxidation, which may contribute to elevated type 2 inflammation among school-aged children. These findings, identified in the general pediatric population at low exposure levels, highlight the need for ongoing attention to the allergic symptoms posed by PFR exposure.
Keywords: Airway inflammation; Eosinophil; Mediation analysis; Mixtures analysis; Organophosphate flame retardants; Oxidative stress; Wheeze.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.