Natural products have been pivotal in drug discovery, offering a wealth of bioactive compounds that significantly contribute to therapeutic developments. Despite the rise of synthetic chemistry, natural products continue to play a crucial role due to their unique chemical structures and diverse biological activities. This study reviews and evaluates the potential of natural products in drug discovery and development, emphasizing the integration of traditional knowledge with modern drug discovery methodologies and addressing the associated challenges. A comprehensive literature search was conducted across PubMed/MedLine, Scopus, Web of Science, Google Scholar, and Cochrane Library, covering publications from 2000 to 2023. Inclusion criteria focused on studies related to natural products, bioactive compounds, medicinal plants, phytochemistry, and AI applications in drug discovery. Data were categorized into source, extraction methods, bioactivity assays, and technological advances. The current review underscores the historical and ongoing importance of natural products in drug discovery. Technological advancements in chromatographic and spectroscopic techniques have improved the isolation and structural elucidation of bioactive compounds. AI and machine learning have streamlined the identification and optimization of natural product leads. Challenges such as biodiversity sustainability and development complexities are discussed, alongside innovative approaches like biosynthetic engineering and metagenomics. Natural products remain a vital source of novel therapeutic agents, providing unique chemical diversity and specific biological activities. Integrating traditional knowledge with modern scientific methods is essential for maximizing the potential of natural products in drug discovery. Despite existing challenges, ongoing research and technological advancements are expected to enhance the efficiency and success of natural product-based drug development.
Keywords: Artificial intelligence; Bioactive compounds; Drug discovery; Medicinal plants; Natural products; Phytochemistry.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.