Understanding the main ecological constraints on plants' adaptive strategies to tolerate multiple abiotic stresses is a central topic in plant ecology. We aimed to uncover such constraints by analysing how the interactions between climate, soil features and species functional traits co-determine the distribution and diversity of stress tolerance strategies to drought, shade, cold and waterlogging in woody plants of the Northern Hemisphere. Functional traits and soil fertility predominantly determined drought and waterlogging/cold tolerance strategies, while climatic factors strongly influenced shade tolerance. We describe the observed patterns by defining 'stress tolerance biomes' and 'polytolerance hotspots', that is, geographic regions where woody plant assemblages have converged to specific tolerance strategies and where the coexistence of multiple tolerance strategies is frequent. The depiction of these regions provides the first macroecological overview of the main environmental and functional requirements underlying the ecological limits to the diversity of abiotic stress tolerance strategies in woody plants.
Keywords: abiotic stress; adaptive strategies; polytolerance; stress biomes; woody plants.
© 2024 The Author(s). Ecology Letters published by John Wiley & Sons Ltd.