Graphenes and graphene-based adsorbents have the potential to be thermally regenerated by microwave irradiation due to their electronic mobility and propensity to absorb microwaves. This article investigates the effect of oxidation on their ability to heat during microwave irradiation in conjunction with their ability to adsorb a polycyclic aromatic hydrocarbon. For this, a series of graphene oxides (GOs) were synthesized, and their chemical properties and surface structures were analyzed systematically. As the oxidation levels increased, the microwave reactivity of GOs decreased notably. This was attributed to the disruption of the sp2-hybridized basal plane despite the introduction of polar oxygen-containing functional groups. The findings of this work indicated the role of the conjugated π-electron system on microwave reactivity, possibly posing a juxtaposition with the influence of polar C-O bonds on dielectric reactivity. In addition, the adsorption of the model compound decreased by oxidation, confirming the decrease in π-π electron donor-acceptor interactions and the increase in the formation of water clusters around oxygen-containing functional groups. This study provides the first mechanistic insight into the relationship between the conjugated π-electron network of graphenes and their microwave reactivity. It paves the way for utilizing microwave irradiation to regenerate spent graphenic adsorbents for water treatment.