Cell-intrinsic mechanisms of immunogenicity in ovarian cancer (OC) are not well understood. Damaging mutations in the SWI/SNF chromatin remodeling complex, such as SMARCA4 (BRG1), are associated with improved response to immune checkpoint blockade; however, the mechanism by which this occurs is unclear. We found that SMARCA4 loss in OC models resulted in increased cancer cell-intrinsic immunogenicity, characterized by up-regulation of long-terminal RNA repeats, increased expression of interferon-stimulated genes, and up-regulation of antigen presentation machinery. Notably, this response was dependent on STING, MAVS, and IRF3 signaling but was independent of the type I interferon receptor. Mouse ovarian and melanoma tumors with SMARCA4 loss demonstrated increased infiltration and activation of cytotoxic T cells, NK cells, and myeloid cells in the tumor microenvironment. These results were recapitulated in BRG1 inhibitor-treated SMARCA4-proficient tumor models, suggesting that modulation of chromatin remodeling through targeting SMARCA4 may serve as a strategy to overcome cancer immune evasion.