Optimization of ultrasound-assisted extraction of mango cotyledon starch: Physicochemical, structural, thermal and functional properties

Int J Biol Macromol. 2024 Dec 2:138239. doi: 10.1016/j.ijbiomac.2024.138239. Online ahead of print.

Abstract

Mango (Mangifera indica L.) seed, a byproduct of mango pulp and juice processing, is recognized for its abundant starch content. The advancement of the modern food industry has prompted a shift away from traditional starch extraction methods due to their environmental impact and low efficiency. The study aimed to optimize the ultrasound-assisted extraction process of starch from the cotyledons of mango seeds, employing response surface methodology with a customized optimal design and an optimal-I optimality criterion. We investigated the effects of cotyledon/water ratio, time, power, and sonication frequency on maximizing starch extraction yield. We explored the impact of ultrasound on structural, morphological, functional, and pasting properties. The maximum starch extraction yield was 50.74%. This yield was about 82.4% higher than that of conventional wet extraction. Ultrasound-assisted extraction increased starch purity and amylose content; it reduced granule size while enhancing all starch pasting properties without affecting starch's chemical structure and morphological, thermal, and functional properties. The mango cotyledon starch can be classified as medium to normal amylose content starches, exhibiting A-type polymorphs, fast-swelling, and capable of forming strong, firm, low-sticky gels. These results demonstrate the potential applications of mango residue and ultrasound technology in the food and pharmaceutical industry.

Keywords: Amylose; Crystallinity; I-optimal design; Mango cotyledon; Optimality; Pasting; Thermal; Ultrasonication.