Functional Characterization of RseC in the SoxR Reducing System and Its Role in Oxidative Stress Response in Escherichia coli

J Microbiol Biotechnol. 2024 Dec 28;34(12):2547-2554. doi: 10.4014/jmb.2410.10007. Epub 2024 Nov 25.

Abstract

The reducing system of SoxR consists of a putative electron transfer system encoded by the rsxABCDGE operon, RseC encoded from the unlinked rpoE-rseABC operon, and ApbE. RseC is composed of two transmembrane helices, with both the N-terminal and C-terminal domains located in the cytoplasm. The N-terminal domain has a four-cysteine motif, CX5CX2CX5C, in the cytoplasm, with the latter three cysteines highly conserved in RseC homologs, allowing the SoxR reducer complex to function in Escherichia coli. These three cysteines can form an oxygen-sensitive Fe-S cluster when only the N-terminal domain is expressed in a truncated form. Without the C-terminal domain, RseC shows no significant difference in interaction with the SoxR reducer complex, but its ability to complement the function of an rseC mutant is greatly reduced. Additionally, the rseC mutant exhibits weak resistance to cumene hydrogen peroxide in the stationary phase and increased sensitivity to hydrogen peroxide in the exponential phase, independent of the SoxR regulon. This suggests that the full-length sequence of RseC is essential for its function and that it may have SoxR-independent additional roles.

Keywords: Oxygen-sensitive Fe-S; Rnf; RseC; SoxR reducer; membrane protein.

MeSH terms

  • Bacterial Proteins* / chemistry
  • Bacterial Proteins* / genetics
  • Bacterial Proteins* / metabolism
  • Escherichia coli Proteins* / genetics
  • Escherichia coli Proteins* / metabolism
  • Escherichia coli* / genetics
  • Escherichia coli* / metabolism
  • Gene Expression Regulation, Bacterial*
  • Hydrogen Peroxide / pharmacology
  • Mutation
  • Operon
  • Oxidation-Reduction
  • Oxidative Stress*
  • Trans-Activators / chemistry
  • Trans-Activators / genetics
  • Trans-Activators / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Escherichia coli Proteins
  • Bacterial Proteins
  • SoxR protein, Bacteria
  • Hydrogen Peroxide
  • Transcription Factors
  • Trans-Activators