Design, Screening and Development of Asymmetric siRNAs Targeting the MYC Oncogene in Triple-Negative Breast Cancer

Biomol Ther (Seoul). 2025 Jan 1;33(1):155-169. doi: 10.4062/biomolther.2024.071. Epub 2024 Dec 5.

Abstract

Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks hormone receptor and Her2 (ERBB2) expression, leaving chemotherapy as the only treatment option. The urgent need for targeted therapy for TNBC patients has led to the investigation of small interfering RNAs (siRNAs), which can target genes in a sequence-specific manner, unlike other drugs. However, the clinical translation of siRNAs has been hindered by the lack of an effective delivery system, except in the case of liver diseases. The MYC oncogene is commonly overexpressed in TNBC compared to other breast cancer subtypes. In this study, we used siRNA to target MYC in MDA-MB-231, MDA-MB-157, MDA-MB-436 and Hs-578T cells. We designed various symmetric and asymmetric (asiRNAs), screened them for in vitro efficacy, modified them for enhanced nuclease resistance and reduced off-target effects, and conjugated them with cholesterol (ChoL) and docosanoic acid (DCA) as a delivery system. DCA was conjugated to the 3' end of asiRNA by a cleavable phosphodiester linker for in vivo delivery. Our findings demonstrated that asiRNA-VP and Mod_asiRNA10-6 efficiently downregulated MYC and its downstream targets, including RRM2, RAD51 and PARP1. Moreover, in a tumor xenograft model, asiRNA-VP-DCA effectively knocked down MYC mRNA and protein expression. Remarkably, durable knockdown persisted for at least 46 days postdosing in mouse tumor xenografts, with no visible signs of toxicity, underscoring the safety of DCA-conjugated asiRNAs. In conclusion, this study developed novel asiRNAs, design platforms, validated modification patterns, and in vivo delivery systems specifically targeting MYC in TNBC.

Keywords: Asymmetric siRNA; Docosanoic acid conjugation; Targeted therapy; Triple-negative breast cancer; c-MYC oncogene; siRNA modification.