Local Wave Function Embedding: Correlation Regions in PNO-LCCSD(T)-F12 Calculations

J Phys Chem A. 2024 Dec 19;128(50):10936-10947. doi: 10.1021/acs.jpca.4c06852. Epub 2024 Dec 5.

Abstract

Many chemical reactions affect only a rather small number of bonds, leaving the largest part of the chemical and geometrical structure of the molecules nearly unchanged. In this work we extended the previously proposed region method [J. Chem. Phys. 128, 144106 (2008)] to PNO-LCCSD(T)-F12. Using this method, we investigate whether accurate reaction energies for larger systems can be obtained by correlating only the electrons in a region of localized molecular orbitals close to the reaction center at high-level (PNO-LCCSD(T)-F12). The remainder is either treated at lower level (PNO-LMP2-F12) or left uncorrelated (Hartree-Fock frozen core). It is demonstrated that indeed the computed reaction energies converge rather quickly with the size of the correlation regions toward the results of the full calculations. Typically, 2-3 bonds from the reacting atoms need to be included to reproduce the results of the full calculations to within ±0.2 kcal/mol. We also computed spin-state energy differences in a large transition metal complex, where a factor of 15 in computation time could be saved, still yielding a result that is within ±0.1 kcal/mol of the one obtained in a full PNO-LCCSD(T)-F12 calculation.