Low-side and multi-tone suppression in the base of the gerbil cochlea

Biophys J. 2024 Dec 4:S0006-3495(24)04065-7. doi: 10.1016/j.bpj.2024.12.004. Online ahead of print.

Abstract

The cochlea's mechanical response to sound stimulation is nonlinear, likely due to saturation of the mechano-electric transduction current that is part of an electromechanical feedback loop. The ability of a second tone or tones to reduce the response to a probe tone is one manifestation of nonlinearity, termed suppression. Using optical coherence tomography to measure motion within the organ of Corti, regional motion variations have been observed. Here, we report on the suppression that occurs within the organ of Corti when a high sound level, low frequency suppressor tone was delivered along with a sweep of discreet single-tones. Responses were measured in the base of the gerbil cochlea at two best frequency locations, with two different directions of observation relative to the sensory tissue's anatomical axes. Suppression extended over a wide frequency range in the outer hair cell region, whereas it was typically limited to the best frequency peak in the reticular lamina region and at the basilar membrane. Aspects of the observed suppression were consistent with the effect of a saturating nonlinearity. Recent measurements have noted the three-dimensional nature of organ of Corti motion. The effects of suppression observed here could be due to a combination of reduced motion amplitude and altered vibration axis.