Olive mill wastewater (OMWW) is a byproduct of olive oil extraction that represents a critical environmental concern due to its potential adverse effects on ecosystems. Given these premises, spray-dried microparticles were designed and developed using maltodextrins as carriers to encapsulate OMWW bioactive compounds. The microparticles were manufactured using an easily scalable and sustainable spray-drying process. The resulting microparticles were smooth, spherical, and exhibited a mean particle size of about 18 μm. The systems demonstrated notable antioxidant properties with a DPPH radical scavenging activity higher than 60 %, due to the polyphenolic compounds of OMWW (about 24 g gallic acid equivalents per g of sample). In addition, the microparticles supported fibroblast and macrophage viability at concentrations up to 1 mg/mL. They also determined a 4-fold inflammation reduction in macrophages, improved collagen expression in fibroblasts, and modulated oxidative stress on aged fibroblasts. In conclusion, these microparticles could be considered as promising medical devices in wound healing, while offering a sustainable solution for valorizing OMWW.
Keywords: Gene expression; Olive mill wastewater; Oxidative stress; Wound healing.
© 2024 The Authors. Published by Elsevier B.V.