Kinetics of naturally induced binding and neutralising anti-SARS-CoV-2 antibody levels and potencies among SARS-CoV-2 infected Kenyans with diverse grades of COVID-19 severity: an observational study

Wellcome Open Res. 2024 Dec 2:8:350. doi: 10.12688/wellcomeopenres.19414.2. eCollection 2023.

Abstract

Background: Given the low levels of coronavirus disease 2019 (COVID-19) vaccine coverage in sub-Saharan Africa (sSA), despite high levels of natural severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) exposures, strategies for extending the breadth and longevity of naturally acquired immunity are warranted. Designing such strategies will require a good understanding of naturally acquired immunity.

Methods: We measured whole-spike immunoglobulin G (IgG) and spike-receptor binding domain (RBD) total immunoglobulins (Igs) on 585 plasma samples collected longitudinally over five successive time points within six months of COVID-19 diagnosis in 309 COVID-19 patients. We measured antibody-neutralising potency against the wild-type (Wuhan) SARS-CoV-2 pseudovirus in a subset of 51 patients over three successive time points. Binding and neutralising antibody levels and potencies were then tested for correlations with COVID-19 severities.

Results: Rates of seroconversion increased from day 0 (day of PCR testing) to day 180 (six months) (63.6% to 100 %) and (69.3 % to 97%) for anti-spike-IgG and anti-spike-RBD binding Igs, respectively. Levels of these binding antibodies peaked at day 28 (p<0.01) and were subsequently maintained for six months without significant decay (p>0.99). Similarly, antibody-neutralising potencies peaked at day 28 (p<0.01) but declined by three-fold, six months after COVID-19 diagnosis (p<0.01). Binding antibody levels were highly correlated with neutralising antibody potencies at all the time points analysed (r>0.60, p<0.01). Levels and potencies of binding and neutralising antibodies increased with disease severity.

Conclusions: Most COVID-19 patients generated SARS-CoV-2 specific binding antibodies that remained stable in the first six months of infection. However, the respective neutralising antibodies decayed three-fold by month-six of COVID-19 diagnosis suggesting that they are short-lived, consistent with what has been observed elsewhere in the world. Thus, regular vaccination boosters are required to sustain the high levels of anti-SARS-CoV-2 naturally acquired neutralising antibody potencies in our population.

Keywords: COVID-19; Kenya; SARS-CoV-2; binding-antibodies; kinetics; natural infection; neutralizing antibodies; sub-Saharan Africa.

Grants and funding

This study was funded by the EDCTP2 Programme (grant number RIA2020EF-3042) which is supported by the European Union, and the Swedish International Development Cooperation Agency. JNK was also supported for his master’s fellowship by the Science for Africa Foundation to the Developing Excellence in Leadership, Training, and Science in Africa (DELTAS Africa) program [DEL-22-012] with support from Wellcome Trust and the UK Foreign, Commonwealth & Development Office and is part of the EDCPT2 programme supported by the European Union.