SSB expression is associated with metabolic parameters of 18F-FDG PET/CT in lung adenocarcinoma and can improve diagnostic efficiency

Heliyon. 2024 Sep 28;10(22):e38702. doi: 10.1016/j.heliyon.2024.e38702. eCollection 2024 Nov 30.

Abstract

Purpose: The study evaluates the expression and functional significance of the Small RNA Binding Exonuclease Protection Factor La (SSB) gene in lung adenocarcinoma (LUAD). By utilizing 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) machines, we correlated SSB gene expression with PET/CT parameters, as well as its value in LUAD diagnosis.

Methods: Fifty-five patients with LUAD underwent 18F-FDG PET/CT imaging prior to pulmonary surgery. Metabolic parameters such as maximum standardized uptake values (SUVmax) were quantitatively calculated from the 18F-FDG PET/CT imaging data. The diagnostic value was compared with that of thyroid transcription factor 1 (TTF1, the current standard-of-care). Publicly procurable datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were used to establish SSB gene expression patterns across diverse cancer types and specifically in LUAD, along with its associations with glycolysis and N6-methyladenosine (m6A) modification.

Results: SSB was highly expressed in LUAD compared to adjacent non-cancerous tissues. SSB additionally demonstrated superior diagnostic utility for LUAD compared to TTF1. The correlation between SSB and SUVmax as well as average standardized uptake values (SUVmean) was positive (P < 0.001), while TTF1 displayed a negative correlation with metabolic tumor volume (MTV) and total lesion glycolysis (TLG) (P < 0.05).

Conclusion: In LUAD, SSB expression correlated with high metabolic activity (SUV) on 18F-FDG PET/CT imaging. SSB is not only an important prognostic marker for lung cancer metastases, but may also represent a novel therapeutic target.

Keywords: 18F-FDG PET/CT; Glucose; LUAD; Metabolic parameter; SSB.