Metasurface spectrometers beyond resolution-sensitivity constraints

Sci Adv. 2024 Dec 6;10(49):eadr7155. doi: 10.1126/sciadv.adr7155. Epub 2024 Dec 6.

Abstract

Conventional spectrometer designs necessitate a compromise between their resolution and sensitivity, especially as device and detector dimensions are scaled down. Here, we report on a miniaturizable spectrometer platform where light throughput onto the detector is instead enhanced as the resolution is increased. This planar, CMOS-compatible platform is based around metasurface encoders designed to exhibit photonic bound states in the continuum, where operational range can be altered or extended simply through adjusting geometric parameters. This system can enhance photon collection efficiency by up to two orders of magnitude versus conventional designs; we demonstrate this sensitivity advantage through ultralow-intensity fluorescent and astrophotonic spectroscopy. This work represents a step forward for the practical utility of spectrometers, affording a route to integrated, chip-based devices that maintain high resolution and SNR without requiring prohibitively long integration times.