The outbreak of COVID-19 coronavirus disease around the end of 2019 was a pandemic. The virus has been mutated and so many strains like Alpha, Beta, and Omicron are present in different parts of the world. Hence, timely detection technique is important to overcome the diagnostic challenges. Considering the need for this pandemic situation, we used a spectroscopy test methodology to distinguish different strains of Covid-19 by computing the infrared & Raman frequencies and the optical absorption data. Optimization of spike protein of Alpha, and Omicron mutations showed the high value of dipole moment (4.44, and 4.36) Debye, and polarizability [Alpha (233.62), Omicron (228.65)] indicating more bioactivity of Alpha and Omicron instead of Beta. Molecular electrostatic potential map exhibits the presence of electrophilic and nucleophilic region suggesting charge transfer of spikes to accept/donate electrons and hence the system increased reactiveness. UV-Vis absorption analysis also shows electronic transitions (σ to π∗ and π to π∗) due to that protein probe mechanism of Alpha and Omicron becomes increasingly become unsaturated thus confirming its easy binding ability to the target human protein as compared to binding affinity of Beta spike protein.
Copyright © 2024 Elsevier Ltd. All rights reserved.