Innovative formulations for the ocular delivery of coenzyme Q10

Drug Deliv Transl Res. 2024 Dec 7. doi: 10.1007/s13346-024-01739-y. Online ahead of print.

Abstract

Coenzyme Q10 (CoQ10) is a lipophilic antioxidant agent that plays a crucial role in the mitochondrial electron transport chain. The neuroprotective role of CoQ10, countering mitochondrial dysfunction and oxidative stress, suggests its potential as an adjuvant for ocular neurodegenerative diseases linked to retinal cell loss. However, despite its promising properties, ocular barriers pose challenges for effective delivery. Therefore, the present work aimed to identify new ocular delivery strategies to improve the therapeutic potential of CoQ10 by increasing its ocular bioavailability at the posterior segment and supporting its controlled release. Polymeric micelles of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were selected as carriers for the loading of CoQ10, increasing its solubility and promoting its penetration through ocular tissues. After their characterization by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), loaded micelles were applied to porcine sclera and choroid to confirm their ex vivo retention and permeation capacity. To ensure a controlled release, they were then loaded into a crosslinked polymer film, which was characterized in terms of mechanical properties, swelling degree and release profiles of TPGS and CoQ10. The biocompatibility of this platform was tested by the HET-CAM assay, and ex vivo studies confirmed its ocular potential.

Keywords: Coenzyme Q10; Controlled release; Ocular drug delivery; Polymeric film; TPGS micelles.