Background: As the vaccination campaign against COVID-19 progresses, it becomes crucial to comprehend the lasting effects of vaccination on safeguarding against new infections or reinfections.
Objective: This study aimed to assess the risk of new SARS-CoV-2 infections based on the number of vaccine doses, prior infections, and other clinical characteristics.
Methods: We defined a cohort of 800 health care workers in a 24-month study (March 2020 to December 2022) in northern Barcelona to determine new infections by SARS-CoV-2. We used extended Cox models, specifically Andersen-Gill (AG) and Prentice-Williams-Peterson, and we examined the risk of new infections. The AG model incorporated variables such as sex, age, job title, number of chronic conditions, vaccine doses, and prior infections. Additionally, 2 Prentice-Williams-Peterson models were adjusted, one for those individuals with no or 1 infection and another for those with 2 or 3 infections, both with the same covariates as the AG model.
Results: The 800 participants (n=605, 75.6% women) received 1, 2, 3, and 4 doses of the vaccine. Compared to those who were unvaccinated, the number of vaccine doses significantly reduced (P<.001) the risk of infection by 66%, 81%, 89%, and 99%, respectively. Unit increase in the number of prior infections reduced the risk of infection by 75% (P<.001). When separating individuals by number of previous infections, risk was significantly reduced for those with no or 1 infection by 61% (P=.02), and by 88%, 93%, and 99% (P<.001) with 1, 2, 3, or 4 doses, respectively. In contrast, for those with 2 or 3 previous infections, the reduction was only significant with the fourth dose, at 98% (P<.001). The number of chronic diseases only increased the risk by 28%-31% (P<.001) for individuals with 0-1 previous infections.
Conclusions: The study suggests that both prior infections and vaccination status significantly contribute to SARS-CoV-2 immunity, supporting vaccine effectiveness in reducing risk of reinfection for up to 24 months after follow-up from the onset of the pandemic. These insights contribute to our understanding of long-term immunity dynamics and inform strategies for mitigating the impact of COVID-19.
Keywords: COVID-19; SARS-CoV-2; cohort; coronavirus; epidemiological; epidemiology; extended Cox models; health care workers; infectious; longitudinal; respiratory; risks; vaccinated; vaccination; vaccines.
© Pere Torán-Monserrat, Noemí Lamonja-Vicente, Anna Costa-Garrido, Lucía A Carrasco-Ribelles, Bibiana Quirant, Marc Boigues, Xaviera Molina, Carla Chacón, Rosalia Dacosta-Aguayo, Fernando Arméstar, Eva María Martínez Cáceres, Julia G Prado, Concepción Violán, ProHEpiC-19 study group. Originally published in JMIR Public Health and Surveillance (https://publichealth.jmir.org).