This study aimed to assess variations in leaf gas-exchange characteristics, leaf pigment contents, and some intrinsic traits of photosynthetic pigment molecules in three rice cultivars (cv. JR3015, Wufengyou3015, and Jifengyou3015) using mechanistic models. The findings revealed that chlorophyll content varied significantly among the three cultivars, but not maximum electron transport rate. JR3015 had lower chlorophyll content but the highest eigen-absorption cross-section (σik) and the lowest minimum average life-time of photosynthetic pigment molecules in the excited state (τmin). Our results suggested that the highest σik and the lowest τmin in JR3015 facilitated its electron transport rate despite its lower leaf chlorophyll content. Furthermore, compared to Jifengyou3015 and Wufengyou3015, JR3015 had the lowest photosynthetic electron-use efficiency via PSII, which contributed to its lowest maximum net photosynthetic rate. These findings are important in selecting rice cultivars based on their differences in photosynthetic capacity.
Keywords: Oryza sativa L.; minimum average lifetime; photosynthesis; photosynthetic light-response curve; photosynthetic pigment molecules.
Copyright: © 2024 Ye et al.