Cortical circuits contain diverse sensory, motor, and cognitive signals, and form densely recurrent networks. This creates challenges for identifying causal relationships between neural populations and behavior. We developed a calcium imaging-based brain-machine interface (BMI) to study the role of posterior parietal cortex (PPC) in controlling navigation in virtual reality. By training a decoder to estimate navigational heading and velocity from PPC activity during virtual navigation, we discovered that mice could immediately navigate toward goal locations when control was switched to BMI. No learning or adaptation was observed during BMI, indicating that naturally occurring PPC activity patterns are sufficient to drive navigational trajectories in real time. During successful BMI trials, decoded trajectories decoupled from the mouse's physical movements, suggesting that PPC activity relates to intended trajectories. Our work demonstrates a role for PPC in navigation and offers a BMI approach for investigating causal links between neural activity and behavior.