To investigate the effects of chronic exposure to the cardiotonic steroid digoxin on locomotor activity, anxiety, and brain tissue monoamine content in Zebrafish. In total 24 adult (3-5 months) wild-type experimentally naïve zebrafish (50 : 50 ratio of females to males) were housed in 4-L tanks, in groups of six animals per tank. Two μM Digoxin was maintained in half of the tanks for 7 days. The 'Novel tank test' was performed on day 7 and the animals were euthanized. Concentrations of dopamine, serotonin, and their metabolites were then quantified in brain tissue using HPLC-ED. Seven-day exposure to 2 μM water solution of digoxin caused robust hyperlocomotion and reduced anxiety-like behavior in adult zebrafish in the 'Novel tank test'. The treatment also evoked pronounced neurochemical responses in zebrafish, including increased whole-brain 3-methoxytyramine, reduced norepinephrine and serotonin, and unaltered dopamine, homovanillic acid or 5-hydroxyindoleacetic acid levels. Deficits in monoaminergic (dopaminergic, serotonergic, and noradrenergic) neurotransmission are a key pathogenetic factor for multiple neuropsychiatric and neurodegenerative diseases. Commonly used clinically to treat cardiac conditions, cardiotonic steroids can affect dopaminergic neurotransmission. Chronic exposure to digoxin evokes hyperactivity-like behavior accompanied by altered monoamine neurotransmission in zebrafish, which may be relevant to understanding the central nervous system side effects of cardiotonic steroids.
Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.