The Amazon, an important biodiversity hotspot, remains poorly explored in terms of its microbial diversity and biotechnological potential. The present study characterized the metabolic potential of Gram-positive strains of the Actinomycetes and Bacilli classes isolated from soil samples of an Amazon Conservation Unit. The sequencing of the 16S rRNA gene classified the strains ACT015, ACT016, and FIR094 within the genera Streptomyces, Rhodococcus, and Brevibacillus, respectively. Genome mining identified 33, 17, and 14 biosynthetic gene clusters (BGCs) in these strains, including pathways for the biosynthesis of antibiotic and antitumor agents. Additionally, 40 BGCs (62,5% of the total BGCs) were related to unknown metabolites. The OSMAC approach and untargeted metabolomics analysis revealed a plethora of metabolites under laboratory conditions, underscoring the untapped chemical diversity and biotechnological potential of these isolates. Our findings illustrated the efficacy of the metabologenomics approach in elucidating secondary metabolism and selecting BGCs with chemical novelty.IMPORTANCEThe largest rainforest in the world is globally recognized for its biodiversity. However, until now, few studies have been conducted to prospect natural products from the Amazon microbiome. In this work, we isolated three free-living bacterial species from the microbiome of pristine soils and used two high-throughput technologies to reveal the vast unexplored repertoire of secondary metabolites produced by these microorganisms.
Keywords: Brevibacillus; Rhodococcus; Streptomyces; biosynthetic gene clusters; secondary metabolism; untargeted metabolomics.