The human body function requires crosstalk between different tissues. An essential crosstalk is in the neuromusculoskeletal (NMS) axis involving neural, muscular, and skeletal tissues, which is challenging to model using human cells. Here, we describe the generation of three-dimensional, NMS tri-tissue organoids (hNMSOs) from human pluripotent stem cells through a co-development strategy. Staining, single-nucleus RNA sequencing, and spatial transcriptome profiling revealed the co-emergence and self-organization of neural, muscular, and skeletal lineages within individual organoids, and the neural domains of hNMSOs obtained a ventral-specific identity and produced motor neurons innervating skeletal muscles. The neural, muscular, and skeletal regions of hNMSOs exhibited maturation and established functional connections during development. Notably, structural, functional, and transcriptomic analyses revealed that skeletal support in hNMSOs benefited human muscular development. Modeling with hNMSOs also unveiled the neuromuscular alterations following pathological skeletal degeneration. Together, our study provides an accessible experimental model for future studies of human NMS crosstalk and abnormality.
Keywords: co-development; hPSCs; neural organoid; neuromusculoskeletal interaction; organoid; spinal cord.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.