People use the mechanical interplay between stability and manoeuvrability to successfully walk. During single-limb support, body states (position and velocity) that increase in lateral stability will inherently resist lateral manoeuvres, decrease medial stability and facilitate medial manoeuvres. Although not well understood, people can make behavioural decisions exploiting this relationship in anticipation of perturbations or direction changes. To characterize the behavioural component of the stability-manoeuvrability relationship, 24 participants performed many repetitions of a discrete stepping task involving mid-trial reactive manoeuvres (medial or lateral direction) in a Baseline (no external perturbations) and Perturbed (random mediolateral perturbations applied to their pelvis) environment. We hypothesized people would make systematic changes in lateral stability dependent on both environment (increasing lateral stability in the Perturbed environment) and anticipated manoeuvre direction (reducing lateral stability to facilitate lateral manoeuvres). Participants increased lateral stability in the Perturbed environment, coinciding with an increase in manoeuvre reaction time for laterally but not medially directed manoeuvres. Moreover, we observed lower lateral stability in both environments when people anticipated making a lateral manoeuvre when compared to medial manoeuvres. These results support the hypothesis that people behaviourally exploit the mechanical relationship between lateral stability and manoeuvrability depending on walk task goals and external environment.
Keywords: balance; gait; locomotion; margin of stability; reaction time.