The cognitive dysfunction in the brain cause severe pathological consequences such as Alzheimer's disease (AD), Parkinson's disease. The current treatments are cost expensive and also cause negative side effects. Therefore it is inevitable to develop natural phyto-compounds as a drug like molecules to treat neurodegenerative diseases. In this context, we have assayed the neuroprotective effects of betanin, an indole derivative, in the neuroblastoma cell line SHSY-5Y cells. The neuroprotective effect was investigated in the β-amyloid (Aβ) - induced SHSY-5Y cells; betanin (25 µg) protected the SHSY-5Y cells from the toxic effects and maintained the cell viability. Moreover, the acridine orange and ethidum Bromide staining decipher that treatment of betanin in the Aβ-induced SHSY-5Y cells maintain the cell viablity sustainably. The Reactive Oxygen Species (ROS) assay infers that betanin quenches the generation of free radicals progressively in the Aβ-induced SHSY-5Y cells. In addition, the autophagy determination by flow cytometry revealed that betanin induces autophagy to remove the neurodegenerated cells. Further, we examined the docking and simulation patterns with the angiotensin-converting enzyme (ACE), TNF-α converting enzyme (TACE), glycogen synthase kinase 3 (GK3), and acetylcholinesterase enzymes (AChE) and amyloid precursor protein (APP). The insilico docking analysis denotes that betanin had a significant docking score with the target molecules. Thus, from the invitro and insilico studies, betanin strongly inhibit the toxic effects of Aβand protect the cells from degeneration.
Keywords: Amyloid; Betanin; Brain; Neurons; Nutraceuticals; SHSY-5Y cells; Tau protein.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.