Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced to designing covalent organic frameworks (COFs) that skillfully combines molecular rigidity with flexibility, integrating both hard and soft donor atoms in the synthesis of monomers. This results in a specialized COF that efficiently and selectively captures TRUs from acidic aqueous solutions. By utilizing the topological arrangement of rigid ligands to influence the twisting and stretching of flexible ligands, coordination environment featuring nitrogen and oxygen is created, which enhances the separation of transuranium in various oxidation states over lanthanides. In 0.5 m HNO3 solution, the as-synthesized DAPhen-COF achieves removal rates of 99.1% for Np(V) and 95.8% for Pu(IV). For Am(III), the removal rate reaches 98.6% in 0.01 m HNO3. DAPhen-COF exhibits remarkable selectivity for Np(V), with a separation factor of over 5000 for Np/Gd, outperforming other solid-phase materials. This research provides a comprehensive investigation into the design and synthesis of COFs for actinide capture, marking the first application of COFs in the separation of various TRUs over lanthanides.
Keywords: actinides/lanthanides separation; covalent organic frameworks; spent fuel reprocessing.
© 2024 Wiley‐VCH GmbH.