Individual and joint associations of exposure to per- and polyfluoroalkyl substances with children's mitochondrial DNA copy number, and modified by estimated glomerular filtration rate

Environ Res. 2024 Dec 10:266:120598. doi: 10.1016/j.envres.2024.120598. Online ahead of print.

Abstract

Background: The association between per- and polyfluoroalkyl substances (PFAS) and mitochondrial DNA copy number (mtDNAcn) in children, and the potential impact of estimated glomerular filtration rate (eGFR) on this association, remains unclear.

Methods: We conducted a panel study with up to 3 surveys over 3 seasons in Weinan and Guangzhou, China. A total of 284 children aged 4-12 years were available, with 742 measurements of 11 PFAS and mtDNAcn. Linear mixed-effect (LME), quantile g-computation (qgcomp), weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models were used to investigate the associations of individuals and a mixture of PFAS with mtDNAcn, and the modifying effect of eGFR on these associations.

Results: Legacy PFAS, including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorooctane sulfonate (PFOS) and emerging PFAS, 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), were significantly associated with decreased mtDNAcn in a linear dose-response manner (FDR <0.05). The multiple PFAS model showed each doubling increase in PFOA related to a 6.36% (95%CI: -10.22%, -2.34%) decrement in mtDNAcn. Meanwhile, the PFAS mixture was dose-responsive related to decreased mtDNAcn, with PFOA being the largest contributor, followed by PFUnDA and PFNA. Notably, eGFR modified the inverse association between PFOA and mtDNAcn (P-int = 0.039), with a more pronounced decrement in children with an eGFR below the 20th value (101.71 mL/min/1.73m2). In addition, age significantly modified the relationship between PFOA and decreased mtDNAcn (P-int = 0.028), with a stronger association in those aged 7 years or older.

Conclusion: Both individual and the mixture of legacy and emerging PFAS exposure were associated with decreased mtDNAcn in children, with PFOA as the main contributor and modification of eGFR.

Keywords: Children; Panel study; Per and polyfluoroalkyl substances mixture; eGFR; mtDNAcn.