Human schistosomiasis is a chronic and debilitating neglected tropical disease caused by parasitic worms of the genus Schistosoma. It is endemic in many countries in sub-Saharan Africa. Although there is currently no vaccine available, vaccines are in development. In this paper, we extend a simple compartmental model of schistosomiasis transmission by incorporating the vaccination option. Unlike previous models of schistosomiasis transmission that focus on control and treatment at the population level, our model focuses on incorporating human behavior and voluntary individual vaccination. We identify vaccination rates needed to achieve herd immunity as well as optimal voluntary vaccination rates. We demonstrate that the prevalence remains too high (higher than 1%) unless the vaccination costs are sufficiently low. Thus, we can conclude that voluntary vaccination (with or without mass drug administration) may not be sufficient to eliminate schistosomiasis as a public health concern. The cost of the vaccine (relative to the cost of schistosomiasis infection) is the most important factor determining whether voluntary vaccination can yield elimination of schistosomiasis. When the cost is low, the optimal voluntary vaccination rate is high enough that the prevalence of schistosomiasis declines under 1%. Once the vaccine becomes available for public use, it will be crucial to ensure that the individuals have as cheap an access to the vaccine as possible.
Keywords: Nash equilibrium; Neglected Tropical Diseases; Schistosoma mansoni; Vaccination game.
©2024 Lopez et al.