Alzheimer's disease (AD) is a neurodegenerative disorder that results in progressive cognitive decline but without any clinically validated cures so far. Understanding the progression of AD is critical for early detection and risk assessment for AD in aging individuals, thereby enabling initiation of timely intervention and improved chance of success in AD trials. Recent pseudotime approach turns cross-sectional data into "faux" longitudinal data to understand how a complex process evolves over time. This is critical for Alzheimer, which unfolds over the course of decades, but the collected data offers only a snapshot. In this study, we tested several state-of-the-art pseudotime approaches to model the full spectrum of AD progression. Subsequently, we evaluated and compared the pseudotime progression score derived from individual imaging modalities and multi-modalities in the ADNI cohort. Our results showed that most existing pseudotime analysis tools do not generalize well to the imaging data, with either flipped progression score or poor separation of diagnosis groups. This is likely due to the underlying assumptions that only stand for single cell data. From the only tool with promising results, it was observed that all pseudotime, derived from either single imaging modalities or multi-modalities, captures the progressiveness of diagnosis groups. Pseudotime from multi-modality, but not the single modalities, confirmed the hypothetical temporal order of imaging phenotypes. In addition, we found that multi-modal pseudotime is mostly driven by amyloid and tau imaging, suggesting their continuous changes along the full spectrum of AD progression.