Ethylene response transcription factor 5 (ERF5) enhances defense against tobacco curly shoot virus and associated betasatellite (TbCSV/TbCSB) in Nicotiana benthamiana

Virology. 2024 Nov 29:603:110309. doi: 10.1016/j.virol.2024.110309. Online ahead of print.

Abstract

Begomovirus/betasatellite disease complex significantly threatens global crop production. Identifying potential plant antiviral genes is crucial for disease control. Nicotiana benthamiana is susceptible to viruses and contains 266 ethylene response transcription factors (ERFs). This study identified 29 NbERFs that were differentially upregulated in tobacco curly shoot virus and its associated betasatellite (TbCSV/TbCSB) infection, with ERF5 being the most common. Nine NbERF5s cluster phylogenetically and Niben101Scf00163g22002 (NbERF5) responds significantly to exogenous ACC treatment. Further analysis confirms the nuclear localization and transcriptional activation activity of NbERF5. Protein interaction assays demonstrate that NbERF5 has no self-interaction and does not interact with the βC1 protein of TbCSB. Silencing NbERF5 enhances TbCSV/TbCSB infection, and overexpression of NbERF5 inhibits TbCSV/TbCSB infection. Importantly, NbERF5 positively regulates the expression of the pathogenesis-related (PR) genes, NbPR1a and NbNPR1. Our findings suggest that NbERF5 enhances TbCSV/TbCSB resistance by activating the PR genes, indicating that NbERF5 is a potential antiviral gene.

Keywords: Betasatellite; Ethylene response transcription factor; Geminivirus; Pathogenesis related-genes; Resistance; Tobacco curly shoot virus; βC1 protein.