This study aimed to explore the effect of directed enzymolysis on the umami characteristics of S. rugosoannulata, clarify the flavour formation mechanism of umami peptides. We expressed a new aminopeptidase (DNPEP) and obtained the umami peptides of S. rugosoannulata by alkaline protease and DNPEP. The optimal enzymolysis conditions were temperature 55 °C, solid-liquid ratio 1:20 (g/mL), alkaline protease enzymolysis (60 min, 0.5 %, pH 9.0), and DNPEP enzymolysis (80 min, 0.3 %, pH 8.0). The umami peptide components were separated by ultrafiltration and gel filtration chromatography. Six umami peptides (EEAKFN, KAELDLH, LADVEEDK, LKEAHDVA, AHLDYGDGK, and LGKSEDDVSK) were identified by LC-MS/MS and virtual screening, and the umami thresholds of the peptides were 0.15-1.09 mmol/L. Molecular simulations revealed that the amino acid residues Glu301, Ser217, Asp218, and Arg277 were crucial in the binding of the umami peptide to the T1R1/T1R3. Therefore, this study provides a theoretical basis for the development of mushroom condiments.
Keywords: Directed enzymolysis; Molecular simulation; Stropharia rugosoannulata; Umami peptide; Virtual screening.
Copyright © 2024. Published by Elsevier Ltd.