Mammalian hydroxylation of microbiome-derived obesogen, delta-valerobetaine, to homocarnitine, a 5-carbon carnitine analogue

J Biol Chem. 2024 Dec 13:108074. doi: 10.1016/j.jbc.2024.108074. Online ahead of print.

Abstract

The recently discovered microbiome-generated obesogen, δ-valerobetaine (5-(trimethylammonio)pentanoate), is a 5-carbon structural analogue of the carnitine precursor, γ-butyrobetaine. Here, we report that δ-valerobetaine is enzymatically hydroxylated by mammalian γ-butyrobetaine dioxygenase (BBOX) to form 3-hydroxy-5-(trimethylammonio)pentanoate, a 5-carbon analogue of carnitine, which we term homocarnitine. Homocarnitine production by human liver extracts depends upon the required BBOX cofactors, 2-oxoglutarate, Fe2+, and ascorbate. Molecular dynamics simulations show successful docking of δ-valerobetaine and homocarnitine to BBOX, pharmacological inhibition of BBOX prevents homocarnitine production, and transfection of a liver cell line with BBOX substantially increases production. Furthermore, an in vivo isotope tracer study shows the conversion of 13C3-trimethyllysine to 13C3-δ-valerobetaine then 13C3-homocarnitine in mice, confirming the in vivo production of homocarnitine. Functional assays show that carnitine palmitoyltransferase acylates homocarnitine to acyl-homocarnitine, analogous to the reactions for the carnitine shuttle. Studies of mouse tissues and human plasma show widespread distribution of homocarnitine and fatty acyl-homocarnitines. The respective structural similarities of homocarnitine and acyl-homocarnitines to carnitine and acyl-carnitines indicate that homocarnitine could impact multiple sites of carnitine distribution and activity, potentially mediating microbiome-associated obesity and metabolic disorders.

Keywords: BBOX; acyltransferase; carnitine; energy metabolism; fatty acid metabolism; homocarnitine; microbiome; obesity; δ-valerobetaine.