The Spatial Organization of Ascending Auditory Pathway Microstructural Maturation From Infancy Through Adolescence Using a Novel Fiber Tracking Approach

Hum Brain Mapp. 2024 Dec 15;45(18):e70091. doi: 10.1002/hbm.70091.

Abstract

Auditory perception is established through experience-dependent stimuli exposure during sensitive developmental periods; however, little is known regarding the structural development of the central auditory pathway in humans. The present study characterized the regional developmental trajectories of the ascending auditory pathway from the brainstem to the auditory cortex from infancy through adolescence using a novel diffusion MRI-based tractography approach and along-tract analyses. We used diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) to quantify the magnitude and timing of auditory pathway microstructural maturation. We found spatially varying patterns of white matter maturation along the length of the tract, with inferior brainstem regions developing earlier than thalamocortical projections and left hemisphere tracts developing earlier than the right. These results help to characterize the processes that give rise to functional auditory processing and may provide a baseline for detecting abnormal development.

Keywords: NODDI; auditory pathway; child development; microstructure; tractography; white matter.

MeSH terms

  • Adolescent
  • Auditory Cortex / diagnostic imaging
  • Auditory Cortex / growth & development
  • Auditory Cortex / physiology
  • Auditory Pathways* / diagnostic imaging
  • Auditory Pathways* / growth & development
  • Auditory Pathways* / physiology
  • Brain Stem / diagnostic imaging
  • Brain Stem / growth & development
  • Child
  • Child, Preschool
  • Diffusion Tensor Imaging* / methods
  • Female
  • Humans
  • Infant
  • Male
  • White Matter / diagnostic imaging
  • White Matter / growth & development