Dyes are considered to be pollutants that pose a considerable worldwide health risk, as they have been discovered as agents that affect the endocrine system. Adsorption is the most commonly used method for removing different substances since it is sustainable, flexible, affordable, and easy to use. Researchers have investigated the usage of agro-waste-based adsorbents that are ecologically friendly for the process of adsorption. This research has emphasized the potential of these adsorbents in developing carbon-based nanocomposites. Improved surface functionalization, great compatibility, and flexibility are beneficial uniqueness of carbon-based nanocomposites as well as a wide variety of applications. As a result, they are highly successful in removing cationic dyes. This paper specifically examines the environmentally friendly usage of activated carbons obtained from agricultural waste and the development of carbon-based-nanocomposites to adsorb positively charged dyes. Additionally, it offers an in-depth investigation of various cationic dyes, operating parameters, adsorption isotherms, kinetics, processes, and thermodynamic investigations. Further research is necessary to determine the effectiveness of carbon-based nanocomposites in removing new endocrine-disrupting pollutants. Additionally, these nanocomposites have the potential to be widely used in treating industrial effluents.
Keywords: Adsorption; Agro-residue carbon; Cationic dyes; Isotherm and kinetics and thermodynamics; Nanocomposites.
© 2024 The Author(s).