Coastal estuaries globally, including the San Francisco Estuary (SFE), are experiencing significant degradation, often resulting in fisheries collapses. The SFE has undergone profound modifications due to population growth, industrialization, urbanization and increasing water exports for human use. These changes have significantly altered the aquatic ecosystem, favouring invasive species and becoming less hospitable to native species such as the longfin smelt (Spirinchus thaleichthys). With longfin smelt abundance declining to <1% of historical numbers, there is a pressing need for laboratory-based experiments aimed at investigating the effects of varying environmental conditions on their stress response and physiology. This study explored the impact of temperature (11 and 14°C) and turbidity maintained with algae (1, 4 and 11 nephelometric turbidity units (NTU)) on the physiological condition of juvenile longfin smelt. Fish were sampled after 2 and 4 weeks in experimental conditions and analysed for whole-body cortisol, glucose, lactate and protein. Condition factor was calculated using length and weight measurements. Critical thermal maximum trials were conducted to assess how prior rearing conditions affected upper thermal tolerance. Cortisol levels were significantly higher in fish held in low-turbidity conditions, whilst glucose levels were significantly greater at lower temperatures and higher turbidities. Protein-to-mass ratios were significantly greater in higher turbidity conditions, with a significant interaction between temperature and turbidity further influencing these ratios. Moreover, 14°C led to diminished condition factors but increased upper thermal tolerances (26.3 ± 0.05 vs 24.6 ± 0.18) compared to longfin smelt at 11°C, highlighting a potential trade-off between the induction of defense mechanisms and subsequent reductions in energy and growth. Data suggest that cooler temperatures (11°C) and elevated turbidities (11 NTU) can benefit juvenile longfin smelt by reducing stress and enhancing growth and energy. These findings hold significant implications for informing and optimizing future endeavours in the culturing and conservation of this species.
Keywords: San Francisco Estuary; climate change; longfin smelt; stress physiology.
© The Author(s) 2024. Published by Oxford University Press and the Society for Experimental Biology.