Skeletal muscle cell growth impairment can result in severe health issues, such as reduced mobility, metabolic problems, and cardiovascular issues, which can significantly impact an individual's overall health and lifestyle. To address this issue, it is essential to adopt a multi-faceted approach. Conventional 2D cell culture methods fail to replicate the critical features of in vivo micro/nanoarchitecture, which is crucial for the growth of skeletal muscle cells. In this study, the directed growth of mouse skeletal myoblasts (C2C12) cells on ECM-free biocompatible scaffolds is demonstrated and fabricated using two-photon lithography (TPL). These scaffolds are 2D and 3D and have nano/micro-features derived from chitosan-based carbon quantum dots (Ch-CQDs). Ch-CQDs act as two-photon initiators for TPL and also provide the scaffolds with adequate mechanical strength and specific binding sites. These scaffolds are biocompatible and can support cellular adhesion and growth without the need for ECM coating. The nano/micro scaffolds mimic the in vivo cellular microenvironment, enabling directed cell growth on ECM-free surfaces. The fabricated scaffolds have tunable mechanical strength ranging from 0.09 to 0.75 GPa. By using Ch-CQDs, scaffolds are created that promote cell growth and alignment, which is crucial for skeletal muscle cell growth.
Keywords: Bioprinting; ECM free substrate; chitosan based carbon quantum dots; directed cell growth; two‐photon lithography.
© 2024 Wiley‐VCH GmbH.