Background: All Hitachi proton pencil beam scanning facilities currently use discrete spot scanning (DSS). Mayo Clinic Florida (MCF) is installing a Hitachi particle therapy system with advanced technologies, including fast scan speeds, high beam intensity, rapid beam off control (RBOC), a skip spot function, and proton pencil beam scanning using dose driven continuous scanning (DDCS). A potential concern of RBOC is the generation of a shoulder at the end of the normal spot delivery due to a flap spot (FS) with a flap dose (FD), which has been investigated for carbon synchrotron but not for proton delivery. While investigated, for instance, for Hitachi's installation at MCF, this methodology could be applicable for all future high intensity proton deliveries.
Purpose: No Hitachi proton facility currently uses the proposed RBOC. This study aimed to understand the dosimetric impact of proton FD at MCF by simulating the FS with a Hitachi proton machine in research mode, reflecting the higher proton intensities expected with RBOC at MCF.
Method: Experiments were conducted to simulate MCF RBOC at Kyoto Prefecture University of Medicine (KPUM) in research mode, reducing delay time (Td) from 1.5 ms to 0.1 ms. 5,000 contiguous spots were delivered on the central axis for proton energies of 70.2, 142.5, and 220.0 MeV; at normal, high dose rate (HDR), and ultra-high dose rate (uHDR) intensities; and at vertical and horizontal gantry angles for different Td. Measurements were taken using a fast oscilloscope and the nozzle's spot position monitor (SPM) and dose monitor (DM). A model was developed to predict FD dependence on beam intensity and assess the dosimetric impact for prostate and brain treatment plans. Two simulation types were planned: a flap DSS plan with FS at every spot and a flap DDCS plan with FS only at the end of each layer.
Result: FD was observed for RBOC with Td = 0.1 ms, showing no gantry angle dependence. FD increased with higher delayed dose rate (DDR), that is, beam intensity. The planning study showed dose volume histogram deterioration with increased FD compared to the clinical plan, but it was only significant for uHDR intensities. Deterioration was marginal in flap DSS plans for the HDR intensities planned at MCF, and flap DDCS plans were even less sensitive than flap DSS plans.
Conclusion: MCF is installing proton DDCS with higher beam intensities, a skip spot function, and fast beam-off control. The resulting FD had an insignificant impact on dose distribution for two patient plans with both DSS and DDCS at the anticipated MCF intensities. However, significant dependence was observed in the case of uHDR. A method to measure the position and dose of the FS during commissioning is described in addition to recommendations for regular QA and log-based proton patient-specific quality assurance.
Keywords: dose driven continuous scanning (DDCS); flap dose; proton therapy.
© 2024 American Association of Physicists in Medicine.