Despite the great progress in molecule photocatalytic solar energy conversion, it is particularly challenging to realize a photocatalytic overall reaction in a non-noble metal complex, which represents a new paradigm for photosynthesis. In this study, a class of novel non-noble metal complexes with head-to-tail geometry were designed and readily synthesized via the coordination of triphenylamine-modified 2,2': 6',2″-terpyridine ligands with Zn2+. As expected, these complexes exhibited the desired through-space charge-transfer transition, generating both long-lived excited states (on the order of microseconds) and separate redox centers under visible-light irradiation. These complexes have particularly low exciton binding energies, which make them excellent heterogeneous single molecular photocatalysts for the overall photosynthetic production of H2O2. Remarkably, a high H2O2 evolution rate (8862 μmol g-1 h-1) was achieved in pure H2O under an air atmosphere via precise molecular tailoring, revealing the unparalleled advantages of molecular photocatalysts in improving the catalytic rate of H2O2 production. This is the first time that single-molecule photocatalysts have been used to efficiently complete the photosynthesis of H2O2. This study presents a new paradigm for photocatalytic energy conversion and provides unique insights into the design of molecular photocatalysts.