Field Crop Evaluation of Polymeric Nanoparticles of Garlic Extract-Chitosan as Biostimulant Seed Nano-Priming in Cereals and Transcriptomic Insights

Polymers (Basel). 2024 Nov 30;16(23):3385. doi: 10.3390/polym16233385.

Abstract

Current crop management worldwide is shifting toward the use of environmentally friendly products. With this objective, we developed a new phytosanitary product with biostimulant properties based on the encapsulation of garlic extract at a lower dose (<0.1%) in chitosan nanoparticles as a seed nano-priming agent. In the present study, the morphology of the nanoparticles, their stability under prolonged storage conditions, and their efficacy as a biostimulant are evaluated on cereals in rainfed crops, and the activities were correlated with a transcriptomic analysis. The nanoparticles showed a spherical shape and had a maximum size close to 200 nm with satisfactory stability at 4 °C, reducing the probability of aggregation processes in the nanoparticles. The biostimulant properties of the nano-priming agent were evaluated in a field experiment with wheat, barley, and oat seeds at 30 and 90 days, showing that plants treated with nanoparticles showed significant differences with higher values in root development, leaf length, and total plant weight. Finally, through a RNA-SEQ analysis of the treated wheat seeds, we have confirmed that the nano-treatment showed a higher increases in regard to development, metabolism, and plant response genes compared with untreated seeds.

Keywords: biostimulant properties; chitosan nanoparticles; crop management; garlic extract; transcriptomic analysis.